A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges.
نویسندگان
چکیده
Understanding the evolution of sex determination in plants requires identifying the mechanisms underlying the transition from monoecious plants, where male and female flowers coexist, to unisexual individuals found in dioecious species. We show that in melon and cucumber, the androecy gene controls female flower development and encodes a limiting enzyme of ethylene biosynthesis, ACS11. ACS11 is expressed in phloem cells connected to flowers programmed to become female, and ACS11 loss-of-function mutants lead to male plants (androecy). CmACS11 represses the expression of the male promoting gene CmWIP1 to control the development and the coexistence of male and female flowers in monoecious species. Because monoecy can lead to dioecy, we show how a combination of alleles of CmACS11 and CmWIP1 can create artificial dioecy.
منابع مشابه
Phylogenetic insights into the correlates of dioecy in meadow-rues (Thalictrum, Ranunculaceae).
Numerous studies have examined the evolution of sexual systems in angiosperms, but few explore the interaction between these and the evolution of pollination mode. Wind pollination is often associated with unisexual flowers, but which evolved first and played a causative role in the evolution of the other is unclear. Thalictrum, meadow-rues (Ranunculaceae), provides a unique opportunity to stud...
متن کاملRepeated evolution of dioecy from monoecy in Siparunaceae (Laurales).
Siparunaceae comprise Glossocalyx with one species in West Africa and Siparuna with 65 species in the neotropics; all have unisexual flowers, and 15 species are monoecious, 50 dioecious. Parsimony and maximum likelihood analyses of combined nuclear ribosomal ITS and chloroplast trnL-trnF intergenic spacer sequences yielded almost identical topologies, which were used to trace the evolution of t...
متن کاملMethods of Sex Determination in Dioecious Angiospermous Plants
Angiosperms are the most diverse group of land plants which provides fruits, food, seed for cultivation and material for hybridization purpose etc. Approximately 90% of all angiosperm species have hermaphrodite (bisexual) flowers and the remaining, onetenth are either monoecious (male and female flowers are separate but grow in same plant) or dioecious (male and female flower grow on different ...
متن کاملEvolution of breeding systems and fruits in New World Galium and relatives (Rubiaceae).
UNLABELLED PREMISE OF THE STUDY Dioecy occurs in only about 6% of angiosperms, yet it has evolved many times from hermaphroditism. Polygamy is an even more uncommon condition within angiosperms, in which both unisexual and bisexual flowers occur within a species. Polygamy, dioecy, and hermaphroditism all occur within a New World clade of Galium (Rubiaceae), in which dioecy is hypothesized to...
متن کاملFunctional recapitulation of transitions in sexual systems by homeosis during the evolution of dioecy in Thalictrum
Sexual systems are highly variable in flowering plants and an important contributor to floral diversity. The ranunculid genus Thalictrum is especially well-suited to study evolutionary transitions in sexual systems. Homeotic transformation of sexual organs (stamens and carpels) is a plausible mechanism for the transition from hermaphroditic to unisexual flowers in this lineage because flowers o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 350 6261 شماره
صفحات -
تاریخ انتشار 2015